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simulations of morphological instabilities and dendritic so-
lidification is given first, in order to put our work into per-We present a front-tracking method to simulate time dependent

two-dimensional dendritic solidification of pure substances. The spective.
method is based on a finite difference approximation of the heat The process of solidification of a pure substance can
equation and explicit tracking of the liquid–solid interface. Disconti- occur in either a stable or an unstable manner. Stable
nuities in material properties between solid and liquid phases as

solidification, classically called the Stefan problem, is char-well as topology changes and interfacial anisotropies are easily
acterized by conduction of heat away from the solid–liquidhandled. The accuracy of the method is verified through comparison

with exact solutions to a two-dimensional Stefan problem. Conver- interface through the solid. The interface generally remains
gence under grid refinement is demonstrated for dendritic solidifi- smooth; any protrusions of the solid into the liquid are
cation problems. Experimentally observed complex dendritic struc- retarded. Stable solidification is dominated by heat diffu-
tures such as liquid trapping, tip-splitting, side branching, and

sion while surface tension and interface kinetic effects arecoarsening are reproduced. We also show that a small increase in
negligible. Analytic solutions of the Stefan problem forthe liquid to solid volumetric heat capacity ratio markedly increases
simple geometries are well known (see, for example, [1]).the solid growth rate and interface instability. Q 1996 Academic

Press, Inc. Numerical methods for the solution of more complex situa-
tions include boundary fixing techniques using the Landau
transformation [2] and the popular enthalpy method [3].

1. INTRODUCTION In the enthalpy method the interface is not explicitly
tracked but must be determined after the solution has been

Dendritic growth of crystals into an undercooled liquid obtained. In this respect the method is easy to use if precise
is a very common form of solidification in castings, ingots, knowledge of the interface location is not critical. It has
and welds. The microstructure produced upon solidifica- received widespread use in industrial applications, where
tion determines the qualities of the solidified raw material the phase change occurs over a temperature range and the
and often the finished product. This problem has attracted melt/solid interface can be described as a mushy zone.
much interest for several years and has been motivated by However, Voller et al. [4] demonstrate that the enthalpy
the desire to predict crystalline microstructure in designing method produces nonphysical features when the melting
solidification methodologies for advanced materials in the temperature is sharply defined. Voller and Cross [5] pro-
aerospace and semiconductor industries, for example. Pro- pose an extension to the conventional enthalpy method
tein crystallization and igneous rock formation are just two which eliminates this problem and they demonstrate its
examples of problems where researchers in fields as diverse applicability to one- and two-dimensional problems. More
as medicine and geology also stand to benefit from a better recently, Swaminathan and Voller [6] have developed a
understanding and control of crystal growth. Despite the general enthalpy method which encompasses both the
large volume of literature dealing with dendritic growth, source-based and the apparent heat capacity enthalpy
the problem is still not well understood, even for the sim- methods. From the general method they identify an opti-
plest case of solidification of a pure substance. Mathemati- mal enthalpy scheme for a range of two-dimensional phase
cal theories and numerical investigations have had only change problems. Comini et al. [7] compare the perfor-
limited success in comparison with experiments. Here, we mance of several enthalpy-based algorithms. Voller and
present a numerical method for solidification problems Swaminathan [8, 9] review fixed grid techniques for phase
based on a simple finite difference approximation of the change problems and enthalpy methods in particular.
heat equation and explicit tracking of the liquid–solid in- Other methods for solving stable solidification problems
terface. The method is general in the sense that it can include inverse methods such as the isotherm migration
handle discontinuities in material properties between liq- method [10], an inverse finite element method by Alexan-
uid and solid phases, interfacial anisotropy, and topology drou [11], and finite element methods using a deforming

mesh [12].changes. An overview of previous research on theories and
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Unstable solidification of a pure substance takes place unique operating state. The marginal stability theory has
come under question in light of recent measurements ofwhen the liquid is cooled below its equilibrium solidifica-

tion temperature. Heat is conducted away from the solid– dendrite tip velocities in pure succinonitrile in microgravity
by Glicksman et al. [31, 32]. In addition, Glicksman andliquid interface through the liquid. Any local protrusion

on the interface that extends into the liquid will be en- Marsh [24] contend that the marginal stability theory can-
not be considered as providing a fundamental theory ofhanced since the magnitude of the temperature gradient

at the protrusion is greater than that at adjacent portions dendritic crystallization due to limitations concerning the
validity of both its theoretical and mathematical founda-of the interface. The process is inherently unstable and the

protrusion will grow until constrained by surface tension tions.
More recent theories which attempt to address the con-and interface kinetic effects. Morphologically complex

dendritic structures result from this competition between cern over marginal stability resulted in advanced analytical
and numerical approaches to the solution of the Nash–surface tension and undercooling. Understanding and

modeling the mechanisms which produce these structures Glicksman integrodifferential equation and variants of this
equation. The role of anisotropy of the interfacial energy inhas been the focus of much research.

The primary instability mechanisms of a steadily advanc- providing a selection mechanism for the dendrite operating
state was used to find solutions of the anisotropic form ofing planar interface were analyzed by Mullins and Sekerka

[13] and Voronkov [14]. A similar linear stability analysis the Nash–Glicksman equation. These so-called micro-
scopic solvability theories are reviewed by Kessler et al.was performed for growing spheres by Mullins and Sekerka

[15] using a quasi-stationary assumption that has been ex- [33, 34], Langer [35, 36], Pelcé [37], Gollub [38], and Kurz
and Trivedi [39]. These theories and a related method bytended to include interface kinetics [16, 17]. Steady state

models of dendrite growth are based on Ivantsov’s solution Miyata et al. [40] are not supported by recent experiments
on camphene, pivalic acid, and succinonitrile by Rubinstein[18] of the heat transport equation for a paraboloidal,

isothermal interface growing at constant velocity into a and Glicksman [41, 42] and there is still a debate over
whether anisotropy of the interfacial energy provides auniformly undercooled liquid. For a given undercooling,

an infinite number of solutions are given by combinations fundamental physical basis for the dendrite operating state
selection [24].of the growth speed, V, and the tip radius, R, according

to the relationship VR 5 const. However, this set of solu- Numerical methods for dendritic solidification problems
are not as common as those for Stefan problems, due pri-tions is clearly inconsistent with the thermodynamic con-

straint of a minimum radius below which no growth can marily to the difficulties involved in handling the complex,
unstable interface shapes. Several numerical simulations,occur. The Ivantsov model also does not take into account

effects due to surface tension and interface kinetics. Tem- mostly in two dimensions, have, however, been successful
in obtaining qualitative agreement with observed dendritickin [19], Bolling and Tiller [20], Trivedi [21], and Glicks-

man and Schaefer [22, 23] addressed these problems by structures. Sullivan et al. [43, 44] use a finite element
method with a deforming mesh and a careful numericalincluding surface tension effects. Similar to Ivantsov’s re-

sult, an infinite number of solutions are given in terms of treatment of interface curvature to perform two-dimen-
sional simulations. They have also modified this methodV 2 R combinations. However, for a given undercooling

the curves exhibit a maximum velocity which was thought to include anisotropic material properties [45]. In spite
of the two-dimensional limitations, they obtained goodto be the unique operating state of the dendrite. Unfortu-

nately, the tip radii predicted by the maximum velocity agreement with experimental observations of dendrite tip
velocities as a function of tip curvature. Tacke [46] appliedhypothesis do not agree well with experimental observa-

tions [24]. Nash and Glicksman [25] formulated a self- a finite-difference enthalpy method to the 2D dendritic
solidification problem. Although his results exhibit qualita-consistent free boundary problem in the form of a nonlin-

ear integrodifferential equation. Solution of this equation tively realistic phenomena, the fourfold symmetry of the
dendritic structures in his simulations is due to a canaliza-[26] yielded only a slight modification to Ivantsov’s parabo-

loid shape and results similar to the maximum velocity hy- tion effect of the grid and not to any physical anisotropy.
Sethian and Strain [47] use a level set approach to deter-pothesis.

Time dependent theories for morphological instability mine the solid/liquid boundary and include effects of aniso-
tropic surface tension and interface kinetics. Almgren [48]were developed in response to the shortcomings of the

steady state models. The concept of marginal stability was uses a variational algorithm to perform similar computa-
tions. The interface is tracked and its shape is determinedestablished by Langer and Müller-Krumbhaar [27–30].

They assumed that the operating state of the dendrite tip by minimizing an energy functional made up of bulk and
surface energy contributions. The interface temperaturelies at the margin of the linearly stable and unstable states.

The analysis resulted in a second relation between V and condition is only approximately satisfied at each time step
in this method. Roosen and Taylor [49] introduce a front-R which, together with Ivantsov’s solution, determines a
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tracking scheme which avoids direct computation of inter- dependent on the mesh used. There is still debate over the
thermodynamic basis of some of the phase-field modelsface curvature by assuming that the interface is a polygon.

They admit, however, that their method contains an inher- currently in use and their relation to interfacial dynamics
[65, 64]. Penrose and Fife [65] and more recently Wangent grid-induced anisotropy which is present even at high

grid resolutions. Shyy et al. [50] have used an interface et al. [66] have developed thermodynamically consistent
phase-field models based on an entropy functional.tracking method for the solution of stable and unstable

solidification problems in which they map the governing Wheeler et al. [67] and Murray et al. [68] have used the
phase-field model of Wang et al. to critically assess theequations into curvilinear coordinates. For the unstable

problem, they use scaling arguments to decompose the computational viability of phase field models. For two-
dimensional computations of anisotropic nickel dendritesdomain into an inner region where interface perturbations

develop and an outer region where the interface is as- they find that their results are in good agreement with
the Ivantsov and microscopic solvability theories for asumed to be planar. The two regions are coupled by

matching of the boundary conditions. Brattkus and given phase-field parameter which determines the inter-
face thickness. The results, however, are dependent onMeiron [51] have developed an efficient algorithm to

compute one-dimensional free-boundary problems using the interface thickness. They suggest that, at present,
realistic phase-field computations suffer from the inabilitya boundary integral formulation. Their method can handle

the general problem of unequal thermal diffusivities be- to sufficiently resolve the interface. An investigation of
the interface resolution problem in phase-field modelstween the liquid and solid phases. They have applied the

method to study oscillatory instabilities in rapid direc- using linear stability analyses is the subject of recent work
by Braun et al. [69].tional solidification.

Phase-field models and their numerical implementation Although significant advancements in describing and un-
derstanding the mechanisms of morphological instabilityare currently the subject of considerable interest. Langer

[52], Fix [53], Caginalp [54–56], Caginalp and Fife [57], have been made in the past several decades, it is clear that
no single unifying theory is available which can accuratelyand Collins and Levine [58] have extensively studied and

adapted this method. A phase-field variable f is postulated predict the microstructure of unstable solidification. Nu-
merical schemes are mostly limited to simulations of thewhich identifies the phase of a point in the domain. If the

point lies in the liquid region, f 5 0; if the point lies in qualitative features of dendritic growth. The aim of the
present work is to provide a new numerical tool with whichthe solid region, f 5 1. Values of f between zero and one

represent points that lie in the interface. An evolution to study and identify the mechanisms of dendritic growth
and instability under a large range of conditions. The front-equation for this scalar function, consistent with the second

law of thermodynamics, is coupled to a modified heat equa- tracking method described in the next section is general
in the sense that it can easily handle discontinuous materialtion. Solution of this system of equations provides values

of the temperature and the phase-field variable and thus, properties between the liquid and solid phases, topology
changes, and anisotropy of interfacial energy and kinetics.implicitly, the interface location. The main advantage of

this approach is that complex topology changes are easily We take a direct approach to the numerical simulation of
the governing phenomenological equations and interfacehandled since there is no need to explicitly track the inter-

face or even provide interfacial boundary conditions. The conditions. Solutions for the heat flow and interface motion
are fully coupled at each time step. Front-tracking explic-disadvantage of this method is in relating the parameters

in the evolution equation for f to phenomenological pa- itly provides the location of the interface at all times and
the Gibbs–Thomson condition on the interface tempera-rameters such as surface tension and interface kinetic coef-

ficient. Caginalp [55] has shown that the classical phenome- ture is also explicitly satisfied. In this way we avoid intro-
ducing nonphysical simulation parameters. Undercooling,nological boundary conditions of solidification are

recovered under certain limits of the phase-field equations. surface tension, kinetic mobility, and the thermal conduc-
tivity and volumetric heat capacity ratios between liquidCaginalp and Socolovsky [59, 60] conducted spherically

symmetric calculations using the phase-field model. Their and solid directly control the solution. In Section 3, we
discuss results using this method for both stable and unsta-work provided numerical verification of the concept of a

critical radius and qualitative agreement with single needle ble solidification problems. We first compare numerical
results to an exact solution of the stable Stefan problemcrystals. Impressive two- and three-dimensional numerical

computations by Kobyashi [61–63] reveal qualitatively cor- of solidification by a line heat sink. For unstable dendritic
solidification we assess the validity of the results throughrect large-scale features of dendritic structures. However,

the simulation parameters had to be carefully adjusted to grid refinement studies and comparison with theories for
nucleation and limiting solid fraction. We also identify theproduce the desired structures and Wheeler [64] demon-

strates that small-scale features of Kobyashi’s calculations effect of discontinuous material properties on the interface
growth rate and stability.such as liquid trapping and tip splitting events are crucially
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2. FORMULATION AND NUMERICAL METHOD L is the volumetric latent heat of fusion, cl and cs are,
respectively, the liquid and solid volumetric heat capacities

We consider a square, wall bounded two-dimensional and T*f is the interface temperature, T*(xf (t)). V 5 (dxf/
domain in which we are interested in describing the solidi- dt) ? n is the normal velocity of the interface, where n is
fication of a pure substance and the evolution of the liquid– the normal to the interface. The term in the brackets in
solid interface. In the dendritic solidification problem, a Eq. (3) can be thought of as a temperature dependent
small seed of solid is introduced into an undercooled liquid. latent heat due to the effects of discontinuous heat capacity
Initially, the temperature everywhere in the solid is as- and the fact that the phase change generally occurs at a
sumed to be equal to the equilibrium fusion temperature temperature, T*f , different than the equilibrium melting
Tm and the temperature in the surrounding liquid is as- temperature, Tm .
sumed to be Ty . Thus the liquid is undercooled by an In addition, the Gibbs–Thomson temperature condition
amount Ty 2 Tm . The densities of the liquid and solid must be satisfied at the interface. A thermodynamic analy-
phases are assumed to be equal and constant. Volume sis of phase coexistence at a curved interface reveals terms
contraction and expansion, as well as fluid convection ef- in the Gibbs–Thomson condition which account for the
fects, are thereby neglected. The thermal conductivity and effect of discontinuous heat capacity. This expression, de-
volumetric heat capacity of each phase are constant but rived in [71, 72], is
not necessarily equal. A formulation employing a single
heat equation can be written for both phases as long as
the jumps in material properties and the liberation/absorp- T*f 2 Tm 1

Tm(cl 2 cs)
L ST*f ln

T*f
Tm

1 Tm 2 T*f D
tion of latent heat at the interface is correctly accounted
for. In conservative form the heat equation is 1

c(n)Tm

L
k 1

V
n(n)

5 0, (4)

(cT*)
t

5 = ? k=T* 1 Q, (1) where c(n) is the anisotropic surface tension as a function
of the local surface normal orientation and k is twice the
mean interface curvature which is positive when the centerwhere T* is the temperature field and c and k are the
of curvature lies in the solid phase. The last term accountsvolumetric heat capacity and thermal conductivity, respec-
for the effect of anisotropic kinetic mobility, n(n). It istively. Q is an energy source term which accounts for the
intended to model the inherent nonequilibrium nature ofliberation or absorption of latent heat at the liquid–solid in-
the phase change process. We make the assumption thatterface:
kinetic effects are linearly proportional to the interface
temperature. At large undercooling and, thus, high growth

Q 5 E
f
qd(x 2 xf) da; (2) velocity this parameter adds a stabilization effect to the

interface by depressing the local freezing temperature. A
q is the heat source at the interface and d(x 2 xf) is a small enough value of n acts simply to suppress the growth
three-dimensional delta function that is nonzero only at of any unstable protrusions of the interface.
the interface where x 5 xf . Since the above integral is over We note that integration of Eq. (1) across the interface
a surface, the source term, Q, is still a delta function. directly yields the classic Stefan condition,
The above formulation is not new and has been used, for
example, by Lightfoot [70] in analytic solutions to phase q 5 [ks=Ts 2 kl=Tl] ? n. (5)
change problems and more recently in source-based en-
thalpy methods [6]. The treatment of the interface source Thus the formulation in Eqs. (1)–(3) satisfies the Stefan
term, Q, is of crucial importance to numerical solutions condition on the interface without the numerical difficulty
which use the phase change formulation in Eq. (1). As we of calculating temperature gradient values on the interface.
describe below, the front-tracking method presented here Here, kl and ks are the liquid and solid thermal conductivi-
allows a detailed description of the interface microstruc- ties, respectively. If the heat capacity is equal in both phases
ture which is of primary interest in dendritic solidifica- and in the absence of molecular kinetic effects and anisot-
tion problems. ropy, Eq. (4) reduces to the classic Gibbs–Thomson con-

The expression for the interface heat source, q, is a dition:
variation of the classic Stefan condition which accounts
for the discontinuous heat capacity across the phases and

T*f 5 Tm 2
cTm

L
k. (6)is derived in [71]:

q 5 [L 1 (cl 2 cs)(T*f 2 Tm)]V. (3) In order to differentiate liquid and solid material regions
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we use an indicator function, I(x), similar to the phase- second order in the local interface temperature, Tf , and
may usually be neglected except at large undercooling.field variable in phase-field models that has the value 1 in

the solid phase and 0 in the liquid phase. Unlike the phase- However, we note that for hypercooled situations this term
is significant. In our simulations we include this term sincefield variable, I(x) is constructed from the known position

of the interface rather than used to determine the position it may have some effect in the parameter range of our
simulations. We observe from Eqs. (12) and (13) that theof the interface. The numerical construction of the indica-

tor function will be discussed shortly. This function allows effect of discontinuous heat capacity is governed locally
by interface capillarity and kinetic effects. In general theus to evaluate the values of the material properties at every

location by effect should be larger for large undercooling.
The functional form of the two-dimensional anisotropic

capillary parameter, sn(n), and inverse kinetic mobility,c(x) 5 cl 1 (cs 2 cl)I(x) (7)
en(n), is similar to that used by Almgren [48],

k(x) 5 kl 1 (ks 2 kl)I(x). (8)

sn(u) 5 s[1 1 As[Kd sin4(As ms(u 2 fs)) 2 1]] (14)In terms of the nondimensional temperature, volumetric
heat capacity, and thermal conductivity, en(u) 5 e[1 1 Ak[Kd sin4(As mk(u 2 fk)) 2 1]] (15)

where
T 5

cs

L
(T* 2 Tm), C 5

cl

cs
1 S1 2

cl

cs
D I(x),

(9)
s 5

csTmc
L2Z

(16)
K 5

kl

ks
1 S1 2

kl

ks
D I(x),

is the isotropic capillary parameter and
and scaling all lengths by a suitable length scale, Z, Q, and
q by csZ/ksL, normal velocity by csZ/ks , and time by ks/ e 5

ks

nLZ
(17)csZ2, Eqs. (1)–(4) become

is the isotropic inverse kinetic mobility. The constants As ,

t
(CT) 5 = ? K=T 1 Q (10)

Ak determine the magnitude of anisotropy, ms and mk

determine the mode of symmetry of the crystal, and fs
Q 5 E

f
qd(x 2 xf) da (11) and fk determine the angle of the symmetry axis with

respect to the x-axis. The idea behind this choice of func-
tion is to model a crystalline material with a sharp-corneredq 5 F1 1 Scl

cs
2 1D TfG V (12)

polygonal shape. For example, for As 5 1, sn(u) ranges
from 0 to Kd with a fourth-order minimum at (u 2 fs) 5
2nf/ms. For ms 5 4 the resulting shape would be four-Tf 1 Scl

cs
2 1D T2

f 1 sn(n)k 1 en(n)V 5 0. (13)
fold symmetric.

The numerical technique used for the simulations is
based on the front tracking method developed forThe above set of nondimensional equations, Eqs. (10)–

(13), is the mathematical formulation of the solidification multifluid flows by Unverdi [74] and discussed by Unverdi
and Tryggvason [75, 76] in three-dimensional simulationsproblem which we solve numerically.

In deriving Eq. (13) we have used the first-order approxi- of rising and colliding bubbles. It has been used to study
the rise of contaminated bubbles (Jan and Tryggvasonmation ln(1 1 z) P z for small z in the heat capacity term.

In this case, z 5 (T*f 2 Tm)/Tm . A conservative estimate [77]), the axisymmetric collision of two drops (Nobari et al.
[78]), the thermal migration of a two-dimensional bubblefor the maximum value of z is at nucleation, where T*f P

Ty . Then, maximum observed values for z are 0.14 for cloud (Nas and Tryggvason [79]), as well as other problems.
Here, we will describe the procedure as it is applied towater, 0.04 for succinonitrile, and 0.13–0.25 for most pure

metals [73], which leads to an error in the logarithm ap- moving boundary problems in solidification and specifically
to the numerical solution of Eqs. (10)–(13).proximation of roughly 10% in the worst case and only

a few percent for more typical undercoolings. Far from In the numerical solution, we use a square, stationary,
regular grid of mesh size h and discretize the heat equation,nucleation conditions, where our simulations are run, T*f

is closer to Tm than it is to Ty and the logarithm approxima- Eq. (10), using a conservative, second-order, centered dif-
ference scheme for the spatial variables and an explicit,tion becomes even better.

In Eq. (13) the term involving the heat capacity ratio is first-order, forward Euler time integration method. The
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method is traditionally called the forward in time, centered a line and they are relatively straightforward. The interface
points are connected by forward and backward linked listsin space, or FTCS, scheme. (We note that the interface

tracking is independent of the method used to solve the and interface restructuring is simply a matter of reset-
ting pointers.governing equations on the stationary grid and thus the

method is not restricted to the use of finite differences At each time step information must be passed between
the moving Lagrangian interface and the stationary Eu-but may be implemented using finite elements or finite

volumes. Second-order time integration can also be easily lerian grid since the Lagrangian interface points, xk , do
not necessarily coincide with the Eulerian grid points, xij .implemented for increased accuracy.) We use a variable

time step that depends on the mesh size, h, and the interface This is done by a method that has become known as the
immersed boundary technique which was introduced byvelocity, V. Its value is determined such that two criteria

are met. First, the maximum value of the time step must Peskin [80] for the analysis of blood flow in the heart. With
this technique, the infinitely thin interface is approximatedsatisfy the stability requirement for the two-dimensional

FTCS scheme. For stability, the time step, Dt, is required by a smooth distribution function that is used to distribute
the heat sources at the interface (due to liberation/absorp-to satisfy Dt # h2/4a, where a is the thermal diffusivity of

the solid or liquid, whichever is larger. Second, we ensure tion of latent heat) over grid points nearest the interface.
In a similar manner, this function is used to interpolatethat the interface does not move a distance larger than

about a;A of a mesh block in one time step. (a;A was found the temperature field from the stationary grid to the inter-
face. In this way, the front is given a finite thickness on theto provide sufficient stability.) Thus the time step is also

restricted to Dt # h/(10uVmaxu), where uVmaxu is the magni- order of the mesh size to provide stability and smoothness.
There is also no numerical diffusion since this thicknesstude of the maximum value of the interface velocity. Gen-

erally, the first criterion determines the time step through- remains constant for all time. The interface heat sources,
qk , can be distributed to the grid and the grid temperatures,out most of the computation, except at early times when

the interface motion is rapid. Tij , can be interpolated to the interface by the discre-
tized summations:The interface is represented by separate, nonstationary

computational points connected to form a one-dimensional
front which lies within the two-dimensional stationary Qij 5 O

k
qkFij(xk)Dsk , (18)

mesh. The front is used to advect the discontinuous mate-
Tk 5 O

ij
h2TijFij(xk), (19)rial property fields and to calculate interface curvature and

normal velocity. The curvature, normal, and tangent at
each interface point are found from a fourth-order polyno- where Dsk is the average of the straight line distances from
mial which is fitted through each point and two adjacent the point k to the two points on either side of k. Equation
points on either side of that point. (18) is the discretized form of Eq. (11), where we have

The interface deforms greatly in our simulations and it approximated the Dirac function by the distribution func-
is necessary to add and delete interface points during the tion, Fij. For xk 5 (xk , yk) we have used the distribution
course of the calculation such that the distance between function suggested by Peskin [81],
adjacent points, d, is maintained on the order of the station-
ary grid spacing, h. For our simulations we have used

Fij(xk) 5
f(xk/h 2 i)f( yk/h 2 j)

h2 , (20)0.4 , d/h , 1.6. To accommodate topology changes, inter-
faces are allowed to reconnect when either parts of the
same interface or parts of two separate interfaces come

whereclose together. The instantaneous change in topology is, of
course, only an approximation of what happens in reality.
Since it is not well known at what distance the interfaces
will coalesce when brought together and we cannot resolve f(r) 5 5

f1(r), uru # 1,

1/2 2 f1(2 2 uru), 1 , uru , 2,

0, uru $ 2

(21)
distances down to such a small scale, we artificially re-
connect the interface when two points come closer than a
small distance, p. This distance is chosen rather arbitrarily

andfor lack of a better physical model. But here the advantage
of front-tracking is evident since we can control the dis-
tance at which interfaces merge and study the effect of f1(r) 5

3 2 2uru 1 Ï1 1 4uru 2 4r2

8
. (22)

varying p, unlike in phase field methods where there is no
active control over topology changes. While the above
modifications to the interface are a major task for fully We have also used Peskin’s [80] cosine distribution func-

tion and have found no discernible difference in the results.three-dimensional simulations, here the interface is simply
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Tryggvason and co-workers [74–79] have extended the the sudden introduction of a small seed of solid into an
undercooled liquid. (The Gibbs–Thomson condition, Eq.immersed boundary technique to accommodate discontin-

uous material properties through the numerical construc- (13), is not necessarily satisfied for the initially specified
interface shape and temperature field but it is satisfied aftertion of an indicator function, I(x). The jump in the indicator

function across the interface is distributed to the grid points the first time step has been taken. Since our computation
utilizes a variable time step, we set the step to be initiallynearest to the interface using Peskin’s distribution func-

tion. This generates a grid-gradient field, G(x), which is quite small. The result after this first small time step can
then be effectively considered the proper initial conditionzero except near the interface, and has a finite thickness.

By numerical differentiation, using second-order centered which satisfies the Gibbs–Thomson condition.)
Given the initial interface shape, temperature, and mate-differences, we find the divergence of the gradient field,

(= ? G), thus calculating the Laplacian of the indicator rial property fields, the solution algorithm proceeds itera-
tively through the following steps:function. This is again zero, except near the interface. To

find the indicator function everywhere we solve the Pois-
1. Using an estimate for the normal velocity, V, atson equation

each interface point the heat source at the interface, q, is
calculated from Eq. (12) and is distributed to the stationary

=2I 5 = ? G. (23)
grid using Eq. (18).

2. Using the velocity estimate, the interface is advectedThe indicator function is constant within each material
to a new position by: V 5 (dxf/dt) ? n.region, but it has a finite thickness transition zone around

the interface and therefore approximates a two-dimen- 3. The indicator function is constructed from the new
sional step-function. The primary advantage of this ap- interface position by solving Eq. (23) and the heat capacity
proach is that close interfaces can interact in a natural field is found using Eq. (7) .
way since the gradients simply add or cancel as the grid 4. With appropriate wall boundary conditions, Eq. (10)
distribution is constructed from the information carried by is solved for the temperature field at time t 1 Dt by a
the tracked front. Therefore, when two interfaces are close conservative FTCS scheme.
together the full influence of the latent heat from both

5. This temperature field is interpolated by Eq. (19)interfaces is included in the heat equation. It should be
onto the interface at its new position to find the tempera-noted that if the material properties are equal in both the
ture at each point on the interface.liquid and solid regions then there is no need to construct

the indicator function. 6. If the Gibbs–Thomson condition, Eq. (13), is satis-
The use of front-tracking is not new to the numerical fied then the thermal conductivity field is updated to the

solution of solidification problems. Some features of the new interface position by Eq. (8) and the computation
present method such as the interface curvature calculation proceeds to the next time step. Otherwise, a new estimate
and the concept of interface restructuring to maintain a for V is determined and we return to step 1.
fairly constant point spacing are similar to those used by

In the last step, the new estimate for V can be found by anShyy [50] and Almgren [48], for example. The major
iterative method. We have found that in one-dimensionalnovelty in the front-tracking method presented here is
problems, where the interface is only one point, the bi-the use of the immersed boundary technique to transfer
section or secant methods work successfully. In two dimen-information between the interface and temperature grids
sions, we must use a multidimensional iterative methodand the construction of the indicator function which en-
since the interface now consists of many points. Here weables computations with discontinuous material prop-
describe a simple iteration scheme for nonlinear sets oferties.
equations which we have found to work well. In general,In order to begin our computation we first specify an
if the interface temperature found in step 5 is substitutedinitial interface shape. From this shape we construct the
into Eq. (13) the right-hand side of this equation will notindicator function as described above and determine the
equal zero but some error, E(V). In order to make thisheat capacity and thermal conductivity fields from Eqs. (7)
error go to zero and thus satisfy Eq. (13) we use a variationand (8). In a similar manner we make use of the indicator
of the Newton iteration method. In matrix form, the New-function to specify the initial temperature field,
ton iteration updates the unknown velocities at each point
by the equation,T(x, t 5 0) 5 St(1 1 I(x)), (24)

Vl11 5 Vl 2 [J]21El(V l), (25)where the Stefan number, St 5 cs(Ty 2 Tm)/L, is the
nondimensional undercooling. This initial temperature
field is, of course, only an approximation intended to model where l is the iteration index, V and E are, respectively,
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the N 3 1 column vectors of interface velocities and where l is the root of
errors at each point. N is the number of interface points.
The Jacobian, J, is the N 3 N matrix of partial derivatives

QL 5 4fel2 F 2kle2asl2/al

ksEi(2asl
2/al)

1
l2

StG . (31)of the error with respect to the velocities, Jmn 5 Em/
Vn. Since these derivatives are difficult to calculate
and the subsequent matrix inversion is computationally

As we have noted, many researchers have performedexpensive, we use a different Jacobian which has the
numerical simulations of stable solidification using a vari-simple form
ety of methods. The purpose of these computations is to
demonstrate the accuracy and robustness of the front-J 5 a21I, (26)
tracking method. The problem of solidification due to a line
heat sink poses an especially rigorous test of the numerical

where I is the identity matrix and a is a constant. This method due to the necessity of accurately predicting the
constant determines the rate of convergence of the itera- location of the moving phase change interface and temper-
tion. In our code we adjust a manually during the first few ature field in the presence of large temperature gradient
time steps until we achieve an optimum rate of conver- variations from infinity at r 5 0 to nearly 0 at the boundary
gence. At the optimum value of a, which is different for of the computational domain. In these figures we present
different physical parameters, the iteration converges comparisons of numerical and exact solutions for a variety
rather quickly to a tolerance of « 5 1025 in 3 to 10 iterations. of physical conditions and numerical parameters. The ini-
The tolerance is calculated by tial and boundary conditions on the temperature for the

numerical solution correspond to the exact solution at each
time step. In order to avoid computation of the infinitely« 5

1
N ON

k51
uV l11

k 2 V l
ku. (27)

negative temperature at r 5 0, this point was placed in the
center of a mesh block. The four points at the vertices of

We have found that optimum values for a range roughly this block were maintained at the exact solution tempera-
between 400 and 800, depending on the physical param- tures. For the stable solidification problem, we solve Eqs.
eters. (10)–(13) as described in the previous section. To be con-

sistent with the exact solution we ignore effects due to
surface tension, interface kinetics, and liquid/solid heat

3. RESULTS AND DISCUSSION capacity ratio in Eqs. (12) and (13). (The effect of the heat
capacity ratio is still included in Eq. (10) in the nondimen-

A. Stable Solidification sional heat capacity field, C.) Equations (12) and (13) for
the stable problem becomeThe two-dimensional Stefan problem of solidification in

the plane due to a continuous line heat sink was solved
q 5 V, Tf 5 0. (32)numerically and compared with the exact analytical solu-

tion given by Carslaw and Jaeger [1] in one-dimensional
In Fig. 1a the average radius of all the interface points isaxisymmetric coordinates:
plotted at each time for three different grid resolutions:
10 3 10, 20 3 20, and 50 3 50. For a heat sink strength,

T(r, t) 5
QL

4f FEi S2r2

4t D2 Ei(2l2)G (28) QL 5 10, and Stefan number, St 5 1, the solution converges
to the exact solution for increasing grid resolution. The
numerical solution is within 0.5% of the exact solution at

in the solid region and the 50 3 50 resolution. Figure 1b plots the error in radius
between the exact and numerical solutions at t 5 0.15 for
several grid resolutions. For consistency, the time step wasT(r, t) 5 1 2

Ei(2asr2/4alt)
Ei(2asl

2/al)
(29)

kept at the same value of Dt 5 3 3 1025 for each of the
resolutions in this figure. As expected, the front tracking

in the liquid region. QL is the strength of the line heat method exhibits between linear and quadratic conver-
sink, a is thermal diffusivity, and Ei is the exponential gence. Leveque and Li [82] studied elliptic equations which
integral. The heat source at the circular interface and its use Peskin’s immersed boundary technique to include sin-
radius are gular sources at an interface. They found that Peskin’s

method converged linearly for several simple test prob-
lems. We note that the numerical results are in goodq(t) 5

l

St t1/2 , Rf(t) 5 2lt1/2, (30)
agreement with the exact solution even at low resolutions.
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FIG. 2. Effect of varying the Stefan number, St. The average radius
of all the interface points versus time is compared to the exact solution
for two different Stefan numbers. 50 3 50 grid, QL 5 10, kl/ks 5 cl/cs 5 1.

of pure conduction without phase change. For a low Stefan
number, the latent heat released is high and the solidifica-
tion problem is dominated by conduction of the latent heat
liberated at the interface. Figure 2 shows numerical and
exact results for large and small Stefan numbers. A plot
of average radius versus time is shown for St 5 10 and
St 5 0.1 for a 50 3 50 grid resolution with a heat sink
strength of QL 5 10. Agreement with the exact solution
is excellent for St 5 10. For St 5 0.1 the higher latent heat
released results in a larger heat flux discontinuity at the
interface. This situation is more difficult to handle numeri-
cally but the results are still within 2% of the exact solution.

In Fig. 3 the average radius versus time is plotted for
two cases where the material properties in the liquid and
solid phases are unequal. The results for a liquid to solid
thermal conductivity ratio, kl/ks 5 0.2 and a liquid to solid

FIG. 1. Stable two-dimensional solidification by a line heat sink. A heat capacity ratio, cl/cs 5 2, agree well with the corre-
grid resolution test. In (a) the average radius of all the interface points sponding exact solutions despite the discontinuities in the
versus time is compared to the exact solution for three different grid

material properties. For comparison, water has kl/ks P 0.25resolutions. In (b) the error in radius at t 5 0.15 between the exact and
and cl/cs P 2. Here, St 5 1, the heat sink strength is in-numerical solutions is plotted for several grid resolutions. As expected,

the front-tracking method exhibits between linear and quadratic conver- creased to QL 5 50, and the grid resolution is increased
gence. St 5 1, QL 5 10, kl/ks 5 cl/cs 5 1. to 100 3 100. Temperature profiles corresponding to the

case where kl/ks 5 0.2 are plotted along the X-axis at a
one-dimensional slice through Y 5 0.51 in Fig. 4. The four
curves are plotted for increasing time from left to right atThus even though the convergence is not quadratic, the

constant in the error estimate is small. time increments of 0.02. The large temperature gradients
near the line heat sink at X 5 0.505 (r 5 0) and theThe Stefan number varies with the temperature drop

that the material must undergo, but for water and some discontinuity in temperature gradient at the melting tem-
perature, T 5 0, due to the release of latent heat and thenonmetals the Stefan number is typically less than unity,

while for metals the Stefan number is generally 1–10. For unequal thermal conductivities are reproduced accurately
by the numerical results. The liquid/solid interfaces for thea high Stefan number the latent heat released during solidi-

fication is small and the problem becomes essentially one curves in Fig. 4 are plotted in Fig. 5. As the interface
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FIG. 3. Effect of varying material properties. The average radius of
all the interface points versus time is compared to the exact solution for
a thermal conductivity ratio kl/ks 5 0.2 and a heat capacity ratio of
cl/cs 5 2. 100 3 100 grid, St 5 1, QL 5 50.

FIG. 5. Liquid/solid interfaces for the four curves in Fig. 4. As the
interface expands outward in concentric circles more points are added
to the interface in order to maintain an interface grid resolution on theexpands outward in concentric circles more points are
order of a stationary grid mesh block, h. kl/ks 5 0.2, cl/cs 5 1, 100 3 100

added to the interface in order to maintain an interface grid, St 5 1, QL 5 50.
grid resolution of 0.4 , d/h , 1.6.

Figure 6 demonstrates the ability of the method to han-
dle topology changes. In this case four heat sinks create

solid regions merge to form a large solid region with anfour expanding circular regions of solid material. As these
entrapped liquid region. This four cusped liquid regionregions approach each other, their interfaces are ruptured
circularizes and eventually disappears as it completely so-when the distance between any interface points is less than
lidifies.an arbitrarily chosen proximity of p 5 0.005. The four

B. Unstable Solidification

We now present the results for unstable solidification
into an undercooled liquid. For all of our simulations the
domain boundaries are insulated. We solve the problem
on the full domain and do not impose any symmetry re-
quirements on the interface shape. The primary physical
parameters are the dimensionless undercooling, St, the
capillary parameter, s, and the ratio of heat capacities and
thermal conductivities in the solid and liquid regions. The
process of solidification into an undercooled liquid is inher-
ently unstable and sensitive to initial conditions. The de-
gree of instability in the growing solid depends on the
choice of physical parameters. Typically, for high s and
low St the liquid/solid interface remains smooth for long
periods of growth while for low s and high St the interface
deforms quickly into a branching dendritic pattern. In our
results we look at the effects of different physical and
numerical parameters on the time-evolving interface
shapes, as well as on global quantities of interest such asFIG. 4. Temperature profiles along the X-axis at Y 5 0.51. The four
solid fraction and total interface length.curves are for increasing time from left to right: t 5 0.003, 0.023, 0.043,

0.063. kl/ks 5 0.2, cl/cs 5 1, 100 3 100 grid, St 5 1, QL 5 50. Figure 7 shows results for four different grid resolutions.
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that these results show the effect of time as well as grid
resolution since the maximum time step decreases with
grid resolution. Figure 8 shows plots of various interface
quantities for the increasing grid resolutions shown in Fig.
7. Plotted versus time are the fraction of material solidified,
the total interface length, and the maximum radius (maxi-
mum distance of an interface point from the center of the
initial interface, (xc , yc) 5 (2, 2)).

The grid resolution obviously has considerable effect
on the solution. For the lowest resolution, the interface
branches excessively, and a comparison with the results
on the finer grids shows that the solution is dominated by
grid effects. The solution of the finer grids, on the other
hand, all have essentially the same features. The four initial
protrusions, or fingers, grow and become wider and then
split. The eight resulting fingers also become wider as they
grow and eventually split. The difference between the solu-
tions on the three grids is the time when the fingers split.
On the coarsest grid (200 3 200) the splitting takes place
early and we have sixteen well developed fingers at the
final time. As the grid is made finer, the fingers split later,
although the difference between the 300 3 300 grid andFIG. 6. Topology change. Four heat sinks create four expanding re-

gions of solid. As the solidifying regions approach each other their inter- the 400 3 400 grid is relatively small. The results are very
faces are ruptured when the distance between any interface points is less much as we should expect. The fingers split due to second-
than p 5 0.005. The four solid regions merge to form a large solid region ary instabilities and these depend sensitively on the amount
with an entrapped liquid region in the center. This four cusped liquid

of noise present. Generally, we expect larger perturbationsregion circularizes and eventually disappears as it completely solidifies.
on the coarser grid and an earlier onset of instability.The physical domain is 2 3 2, 100 3 100 grid, St 5 1, and kl/ks 5

cl/cs 5 1. Therefore, while the solutions in Figs. 7 and 8 are not
fully converged in the sense that the two finest grids give
completely identical solutions, we believe that the physical
phenomena are fully resolved for both grids. Or, said differ-

For these cases St 5 20.5, s 5 0.002, and e 5 0.002 with ently, the important distinction between the solution on
no anisotropy (As 5 Ak 5 0) and equal material properties the 100 3 100 grid and the three finer grids is that the
in the liquid and solid. Interface points are added or deleted instabilities on the 100 3 100 grid are completely artificially
as required to maintain a point spacing of 0.4 , d/h , 1.6. created by the grid noise while on the finer resolutions the
The computational domain is a square with sides of length grid noise only acts to trigger the onset of the physical
4. The shape of the initial interface is specified by Mullins–Sekerka instability. As the resolution increases

and the noise decreases, this physical instability is triggered
xf 5 xc 1 R cos(u), yf 5 yc 1 R sin(u), (33) at later times. In a physical situation, the Mullins–Sekerka

instability would be similarly triggered by thermal fluctua-
where u is measured counterclockwise from the x-axis and tions due to fluid convection or random statistical fluctua-

tions. In most cases, we want to trigger these instabilities
R 5 Ro 1 Rb cos[M(u 1 uo)]. (34) anyway, so perturbations induced by the grid are not neces-

sarily undesirable. If we wished to eliminate the grid effect
completely, we could, of course, introduce noise explicitlyIn this figure, the choice (xc , yc) 5 (2, 2), Ro 5 0.1, Rb 5

0.02, M 5 4, and uo 5 0 produces a perturbed circle with at a sufficiently high level to swamp the grid noise.
A consequence of the earlier tip splitting (and smallerfour lobes aligned with the coordinate axes. The time-

evolving interfaces are plotted for all four grid resolutions tip radii) produced on coarser grids is an increase in tip
growth speed. The increased growth speeds at lower gridat equal nondimensional time increments of 0.03. The final

interface plotted for the 100 3 100 mesh contains 1345 resolutions is evident in Fig. 8, particularly in the plot of
maximum radius versus time. This trend of increased tipinterface points and is at time 0.09. The 200 3 200 mesh

contains 1746 points and is at time 0.63. For the 300 3 300 speed with the decrease in tip radius is an expected result.
Indeed, the trend is similar to Ivantsov’s simplified analysismesh the last shape contains 2053 points at time 0.81 and

for 400 3 400, 2542 points also at time 0.81. We note of a growing dendrite [18]. There he found an inverse
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FIG. 7. A grid resolution study for dendritic solidification in an insulated cavity. The interface evolution for four grid resolutions is plotted at
equal nondimensional time increments of 0.03. As the grid resolution increases the interface shapes become more symmetric and grid independent.
The results reproduce the classic tip splitting instability of dendritic solidification. The final interface plotted for the 100 3 100 mesh in (a) contains
1345 interface points at time 0.09. The last interface for the 200 3 200 mesh in (b) contains 1746 points and is at time 0.63. For the 300 3 300 mesh
in (c) the last shape contains 2053 points at time 0.81 and for the 400 3 400 mesh in (d), 2542 points also at time 0.81. St 5 20.5, s 5 0.002, e 5

0.002 with no anisotropy (As 5 Ak 5 0) and equal material properties (cl/cs 5 kl/ks 5 1).

relationship between dendrite tip speed, V, and tip radius, independent of the interface point spacing for a reasonable
choice of point spacings. This also indicates that the inter-R, namely, VR 5const.

Although we do not show the results here, we have also face curvature calculation using a simple fourth-order poly-
nomial curve fit is sufficiently accurate. All of the remainingstudied the influence of interface point spacing, d. We have

run the same computations as shown in Fig. 7 with interface computations shown here have a point spacing of 0.4 ,
d/h , 1.6.point spacings of 0.2 , d/h , 0.8 and 0.8 , d/h , 3.2. For

the three higher grid resolutions, the effect on the interface To demonstrate that the solution is independent of grid
orientation, we compared runs with different initial inter-shape, as well as the solid fraction, interface length, and

maximum radius, is negligible. The results appear to be face rotations, uo . The interface in Fig. 7d with uo 5 0 was
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FIG. 8. The solid fraction, total interface length, and maximum radius versus time are plotted for the various grid resolutions corresponding to
the interface plots in Fig. 7. The solid fraction, interface length, and maximum radius demonstrate better than linear convergence with increasing
grid resolution. St 5 20.5, s 5 0.002, e 5 0.002 with no anisotropy (As 5 Ak 5 0) and equal material properties (cl/cs 5 kl/ks 5 1).

compared to two runs with uo 5 27 and uo 5 45. The stationary grid does not affect the solution. A plot of the
interface curvature as a function of the surface distance ininterface shapes from the two runs at t 5 0.21 were then

rotated back 278 and 458 respectively and plotted over each Fig. 9b demonstrates the fivefold symmetric structure. This
plot corresponds to the last interface in Fig. 9a. The inter-other for comparison. The three interfaces were nearly

indistinguishable from one another. A plot of this result face curvatures for each of the five main branches in Fig. 9a
are plotted over each other. The curvature repeats nearlywould look identical to the interface in Fig. 7d at t 5 0.21

and thus is not included here. identically five times around the interface. The slight dis-
crepancies in curvature from one branch to another mayIn Fig. 9a an initially fivefold symmetric interface (M 5

5) maintains its symmetry throughout the computation. be partly attributed to the effect of the domain boundaries.
The smoothness of the curvature plot again suggests thatThe last interface shown contains 2113 points at t 5 0.42.

Other than M 5 5, the parameters for this run are the same the simple fourth-order curve fit we have used is sufficiently
accurate in calculating interface curvature.as in Fig. 7d. Clearly there is no grid induced anisotropy and

the alignment of the tracked front with the underlying The condition for homogeneous nucleation of a small
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above which a solidifying particle will grow and below
which it will collapse. In a two-dimensional system this
critical radius is

R* 5 2
s

St
. (36)

In order to see if we could simulate this critical radius we
performed three calculations, all with s 5 2St 5 0.5 and
thus a theoretical critical radius of R* 5 1. The initial
interface for the first case is a circle of radius 1.01, slightly
larger than the critical radius. The second case started with
a circle of radius 1 and the third with a radius of 0.99.
Figure 10 plots the average radius versus time for all three
interfaces. The circle of initial radius 1.01 grows, that with
an initial radius of 0.99 collapses. The circle that started
at the critical radius R* 5 1 stays at 1. As predicted, our
simulations show that a nucleus below the critical radius
will not grow, whereas a nucleus above the critical radius
does grow. For these simulations we used equal material
properties in the liquid and the solid, isotropic surface
tension, and no kinetic effects, e 5 0. The grid resolution
was 300 3 300 in a 10 3 10 square domain.

We next investigate the effect of discontinuous thermal
conductivity and heat capacity between liquid and solid
phases. The results for the interface evolution for various

FIG. 9. At the top an initially fivefold symmetric interface (M 5 5)
maintains its symmetry throughout the computation. The last interface
shown contains 2113 points at t 5 0.42. There is no grid induced anisot-
ropy. Below, a plot of the interface curvature as a function of the surface
distance for the last interface in (a) shows that the curvature repeats
nearly identically five times around the interface. The interface curvatures
for each of the five main branches in (a) are plotted over each other.
M 5 5, St 5 20.5, s 5 0.002, e 5 0.002, As 5 Ak 5 0, cl/cs 5 kl/ks 5

1, and a 400 3 400 grid.

FIG. 10. Simulation of the critical nucleation radius. In a two-dimen-spherical nucleus is that the total excess free energy, DG,
sional system the critical nucleation radius is R* 5 2s/St. Here, s 5of the nucleus is maximum. The excess free energy has
2St 5 0.5 and thus the critical radius is R* 5 1. The radius versus time

volume and surface contributions: for three different initial radii is shown. A circle of initial radius 1.01
grows; one with initial radius of 0.99 collapses. A circle started at the
critical radius R* 5 1 stays at 1. As predicted, our simulations show that

DG 5 2
4
3

fr3 L
Tm

DT 1 4fr2c. (35) a nucleus below the critical radius will not grow, whereas a nucleus above
the critical radius does grow. e 5 0, no anisotropy (As 5 Ak 5 0),
and cl/cs 5 kl/ks 5 1. The grid resolution is 300 3 300 in a 10 3 10
square domain.This leads to the concept of a critical nucleation radius
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thermal conductivity and heat capacity ratios are shown the trend of increased growth rate with increased cl/cs is
reversed for the problem of stable solidification due to thein Figs. 11 and 12. (Figures 11b and 12b are the same as

Fig. 7c and are shown again here to facilitate comparisons.) fact that the liquid is not undercooled and the temperature
gradients in the liquid and solid regions are both positive.)The parameters for these cases are the same as in Fig. 7c,

except that the material property ratios are varied. Again, There appear to be two mechanisms related to the heat
capacity ratio which explain these effects. The first mecha-the interfaces are plotted at equal nondimensional time

increments of 0.03. nism is simply a manifestation of elementary unsteady heat
conduction and does not take interface curvature into ac-Figure 11 shows the effect of increasing kl/ks with

cl/cs 5 1. Increasing the thermal conductivity ratio primar- count. The overall increase in growth rate with increased
heat capacity ratio is a direct result of the varying ability ofily affects the growth rate of the solid and has little effect

on the shape or stability of the interface. The relationship materials with different heat capacities to adjust to thermal
changes. A material with a low volumetric heat capacitybetween the interface velocity and the thermal conductivity

ratio becomes apparent when we look at the nondimen- will respond quickly to thermal changes while one with a
high heat capacity will respond slowly. Therefore, a liquidsional form of the Stefan condition, Eq. (5). At the in-

terface with a high heat capacity has less of an ability to diffuse
the latent heat released in a given time. This results in a
steeper temperature gradient in the liquid adjacent to the
interface. According to the Stefan condition, Eq. (37), aq 5 V 5F=Ts 2

kl

ks
=TlG ? n. (37)

larger liquid side temperature gradient results in a higher
interface velocity. Furthermore, interface movement in the
direction of the liquid steepens the liquid side temperatureCompared to the temperature gradient on the liquid side

of the interface, the temperature gradient on the solid side gradient even more. Conversely, a lower interface velocity
would result from a lower liquid phase heat capacity. Theremains small throughout the computation since both the

interface temperature and the temperature in the bulk of second mechanism produces an increase in interface insta-
bility with increased cl/cs and can be explained by Eqs.the solid remain near the equilibrium freezing tempera-

ture. If we neglect the temperature gradient in the solid, (12) and (13). If we neglect the second-order temperature
term, anisotropy, and interface kinetics in Eq. (13) andthen the interface velocity is proportional to the thermal

conductivity ratio. The results in Figs. 11a–c are consistent combine the two equations to eliminate Tf then we can
write Eq. (37) aswith this analysis. As the liquid to solid thermal conductiv-

ity ratio increases from kl/ks 5 0.2 to 2, a tenfold increase,
the growth rate of the solid increases roughly threefold.

q 5 F1 2 Scl

cs
2 1D skG V 5 [=Ts 2 =Tl] ? n. (38)A comparison with the exact solution of the problem of

stable solidification by a line heat sink discussed earlier
shows that in the stable case the magnitude of the growth The coefficient of the local normal interface velocity, V,

depends on the heat capacity ratio and the local interfacerate roughly doubles with the same tenfold increase in kl/
ks. (The trend of increased growth rate with increased kl/ curvature. If cl/cs . 1 then in regions of positive curvature,

where the interface grows the fastest, this coefficient is lessks is reversed for the problem of stable solidification. This
is due to the fact that the liquid is not undercooled and than 1. For a given q, V must increase to compensate for

the low coefficient. In regions of negative curvature, thethe temperature gradients in the liquid and solid regions
are both positive.) coefficient of V is greater than 1 and thus V is lower for the

same q. The net result is an increase in interface instability.Figure 12 shows the effect of increasing cl/cs with kl/ks

5 1. Increasing the heat capacity ratio even slightly has a Regions of the interface where the interface curvature is
positive grow faster and regions of the interface where thedramatic effect on the interface stability as well as the

growth rate. The effect is much more pronounced than it curvature is negative slow down. The opposite occurs if
cl/cs,1. In regions of positive curvature, the coefficient ofis for a change in the thermal conductivity ratio discussed

above. A higher liquid to solid heat capacity ratio produces V is greater than 1. For the same q, V must be lower. In
regions of negative curvature, the coefficient of V is lessa fast growing unstable solid while a low ratio produces a

slow growing more stable solid shape. In going from than 1 and thus V is higher for the same q. The net result
is a more stable interface where positive curvature regionscl/cs 5 0.83 to 1.2 the growth rate nearly doubles. In com-

parison with the problem of stable solidification by a line grow relatively slowly and negative curvature regions grow
relatively rapidly. Furthermore, the two mechanisms de-heat sink, such a large change in growth rate with a small

change in cl/cs is not expected. The exact solution for the scribed above are coupled in the sense that the local insta-
bilities produced by the second mechanism are enhancedstable problem shows only a 10% change in the magnitude

of the solid growth rate for the same change in cl/cs. (Again, by the global velocity changes in the first.
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FIG. 11. The effect of varying the liquid to solid thermal conductivity ratio. The interfaces are plotted at equal time increments of 0.03. (Here,
Fig. 11b is the same as Fig. 7c.) Increasing the thermal conductivity ratio increases the growth rate of the solid but has little effect on the interface
shape or stability. St 5 20.5, s 5 0.002, e 5 0.002 with no anisotropy (As 5 Ak 5 0), cl/cs 5 1, and a 300 3 300 grid. In Fig. 11a kl/ks 5 0.2. In
Fig. 11b kl/ks 5 1.0. In Fig. 11c, kl/ks 5 2.0.

The above argument and the results in Fig. 12 suggest The strong interface branching exhibited in Figs. 12c, d
may indicate that these results are not completely con-that discontinuity of heat capacity is a crucial consideration

when modeling solid growth rates and interface morphol- verged. However, the results of a resolution study show
about the same rate of convergence as in Fig. 7. As theogy in the dendritic freezing of water, (cl/cs P 2), and some

metals such as lead (cl/cs P 1.1), copper and nickel grid resolution is increased the interfaces become more
symmetric and the interface growth rate is slightly lower.(cl/cs P 1.05), and molybdenum (cl/cs P 1.7) [83]. Most

common pure metals have cl/cs $ 1 and thus tend toward However, the primary trends of increased interface veloc-
ity and instability remain and are due to the increase inmore instability. However, it would be difficult to experi-

mentally isolate the effect of discontinuous heat capacity, cl/cs.
A plot of a solid fraction versus time in Fig. 13 clearlyfor example, on different materials. Other physical param-

eters such as surface tension would usually vary along with shows the increase in growth rate with increased cl/cs . Also
plotted as dashed lines are the maximum theoretical solidthe heat capacity ratio.
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FIG. 12. Effect of varying the liquid to solid heat capacity ratio. The interfaces are plotted at equal time increments of 0.03. (Here, Fig. 12b is
the same as Fig. 7c.) Increasing the heat capacity ratio increases the instability of the interface as well as the growth rate. St 5 20.5, s 5 0.002,
e 5 0.002 with no anisotropy (As 5 Ak 5 0), kl/ks 5 1, and a 300 3 300 grid. In 12a cl/cs 5 0.83. In 12b cl/cs 5 1.0. In 12c cl/cs 5 1.2;
in 12d cl/cs 5 1.4.

fractions for the various heat capacity ratios. The maximum fraction at large time agrees well with the theoretical limit
but begins to differ slightly at higher cl/cs . This discrepancytheoretical amount of solid that can be formed from an

undercooled liquid in an insulated cavity can be found is due to the higher interface curvatures at higher cl/cs . At
high curvatures, interface temperatures deviate from thefrom simple energy conservation to be
equilibrium freezing temperature because of capillary ef-
fects (the Gibbs–Thomson condition). Equation (39) does

fs 5 2
cl

cs
St (39) not take these capillary effects on the temperature into

account.
In Fig. 14 we see the effect of a sixfold anisotropywhich states that the only source of energy available to

raise the temperature of the liquid to the equilibrium melt- (ms 5 6) in the surface tension. The interfaces are plotted
at equal increments of t 5 0.003 and the last interfaceing temperature comes from the latent heat released at

the interface. The numerically calculated value of the solid shown is at t 5 0.03 with 5854 points. The anisotropy
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racies and grid noise. Once the symmetry is broken, how-
ever slightly, the competition between neighboring side
branches results in the growth of some branches and melt-
ing back of others.

A relation for the shortest wavelength at which a distur-
bance on a planar interface, moving with velocity V, be-
comes unstable is given by Mullins and Sekerka [13]:

ls p Ïs/V. (40)

Although the interface in our simulations is not planar,
we can assume the same relationship approximately holds.
It is clear that the problem of resolving the shorter unstable
wavelengths at low s or high undercooling and thus high
V, limits all grid based numerical simulations.

In Fig. 15, a more developed side branch structure results
from lower surface tension. The parameters here are the
same as in Fig. 14, except the capillary parameter is reduced

FIG. 13. The solid fraction versus time shows the increase in growth to s 5 0.001. The initial temperature field for this computa-
rate of the solid with increasing cl/cs . Also plotted are the maximum tion is a uniform temperature given by T(x, t 5 0) 5 St
theoretical solid fractions for the various heat capacity ratios. The numeri-

and not by Eq. (24) as in the previous runs. The interfacescally calculated values of the solid fraction at large time agree well with
are plotted at equal increments of t 5 0.003 and the lastthe theoretical limits but begin to differ slightly at higher cl/cs. This

discrepancy is due to capillary effects on the temperature which are not interface shown is at t 5 0.021 with 11,002 points. With s
taken into account in the theoretical solid fraction. St 5 20.5, s 5 0.002, reduced by half, the primary dendrite arms grow with a
e 5 0.002 with no anisotropy (As 5 Ak 5 0), and a 300 3 300 grid.

strength, As , is 0.4 and the other parameters remain the
same as in Fig. 7d. The initial four-lobed interface no longer
imparts a fourfold symmetry to the evolving interface as
it did with the isotropic simulations. Growth occurs along
six primary directions dictated by the surface tension an-
isotropy. The undercooling has a high value of St 5 20.8
which produces a more complex shape with smaller fea-
tures. In order to spatially resolve this computation we
need to be able to resolve the smallest features with at
least as many mesh points as were required by the smallest
features in Fig. 7d. The smallest features of Fig. 7d are
approximately 0.08 across and are resolved on a 400 3 400
grid. The smallest features in Fig. 14 are the developing
side branches which are about 0.06 across and thus should
be resolved on the 800 3 800 grid used here. The six
primary dendrite arms are certainly fully resolved at this
scale. Although the major structures grow symmetrically,
the small side branch disturbances emanating from the
primary arms begin to grow asymmetrically. Murray et al.
[68] have found in their phase field computations that the
production of side branches was very sensitive to noise,

FIG. 14. With sixfold anisotropy (ms 5 6) in the surface tension,whereas the main dendrite tips were insensitive to noise.
growth occurs along six primary directions. The interfaces are plotted atFigure (14) agrees with this assessment. The main branches
equal increments of t 5 0.003 and the last interface shown is at t 5 0.03grow symmetrically with a constant speed, after the initial
with 5854 points. The undercooling has a high value of St 5 20.8 which

transient, of V 5 40 (see Fig. 16) and tip curvature of produces a more complex shape with smaller features. 800 3 800 grid,
approximately k 5 60, whereas the side branches develop s 5 0.002, As 5 0.4 e 5 0.002, Ak 5 0 with equal material properties

(cl/cs 5 kl/ks 5 1).asymmetrically and are sensitive to small numerical inaccu-
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FIG. 16. A plot of the dendrite length (length of the primary dendrite
arm in the first quadrant) versus time. For the two cases in Figs. 14 and
15. The slopes are constant throughout most of the computation which
indicates that the dendrite tip speed, V, is constant. For s 5 0.001, V is
approximately 60 while for a higher surface tension, s 5 0.002, the tip
speed drops to approximately 40.

FIG. 15. A more well-developed side branch structure results from
lower surface tension. The parameters here are the same as in Fig. 14
except the capillary parameter is reduced to s 5 0.001. The interfaces
are plotted at equal increments of t 5 0.003 and the last interface shown
is at t 5 0.021 with 11,002 points. 800 3 800 grid, s 5 0.001, As 5 0.4
e 5 0.002, Ak 5 0 with equal material properties (cl/cs 5 kl/ks 5 1).

larger but still constant speed of V 5 60 (see Fig. 16) and
a higher tip curvature of approximately k 5 100. Consistent
with Eq. (40), the shortest wavelength of the side branch
instabilities in Fig. 15 is roughly Dg of what it is in Fig. 14.
With these smaller features we are reaching the limit of
spatial resolution for the 800 3 800 grid used here. The
competition between neighboring side branches is more
intense in this figure and results in an earlier onset of
asymmetry.

For the two cases in Figs. 14 and 15, Fig. 16 plots the
dendrite length (length of the primary dendrite arm in
the first quadrant) versus time. The slopes are constant
throughout most of the computation which indicates that
the dendrite tip speed, V, is constant. For s 5 0.001, V is
approximately 60 while for a higher surface tension, s 5
0.002, the tip speed drops to approximately 40.

Figure 17 demonstrates the ability of the front-tracking
FIG. 17. Demonstration of topology change with sixfold anisotropy

method to easily handle qualitatively realistic topology (ms 5 6) in the surface tension. Interfaces are merged when the distance
changes. The interfaces are allowed to merge and form between any two points is less than p 5 0.013. The interface consists of

11 surfaces, 10,890 points, and is plotted at t 5 0.021. The qualitativelyislands of trapped liquid. The parameters for this case
realistic phenomena of liquid trapping and coarsening are reproduced.are the same as in Fig. 15. Interfaces are merged and
Several of the liquid islands have become circularized due to the effectreconnected when the distance between any two points is
of surface tension. The smaller islands eventually completely solidify.

less than p 5 0.013. The interface consists of 11 surfaces, The parameters for this case are the same as in Fig. 15. Comparison
10,890 points, and is plotted at t 5 0.021. Here, the phenom- between this figure and Fig. 15 shows that, other than the topological

changes, the general structure of the interface remains the same.ena of liquid trapping and coarsening are reproduced. Sev-
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which is slightly different than Eq. (14). The interfaces in
Fig. 18 are plotted at equal increments of t 5 0.2 and the
last interface shown is at t 5 4.6. The growth of the four
arms in Fig. 18 is symmetric and the features are well
resolved. One can see the beginnings of side branch devel-
opment; however, for such a low undercooling the effect
of the insulated walls is felt early in the computation and
slows the growth dramatically.

4. CONCLUSIONS

We have presented a new front-tracking method for
stable and unstable solidification of pure substances based
on standard finite difference techniques. Using a simple
iterative algorithm, we solve the governing phenomenolog-
ical equations and interface conditions directly and thus
avoid introducing additional nonphysical simulation pa-
rameters. New features of the method include concepts
from the immersed boundary technique to transfer infor-
mation between the moving front and the stationary tem-
perature grid and the construction of an indicator function
which enables computations with discontinuous materialFIG. 18. Growth of a two-dimensional succinonitrile dendrite. At a

length scale of Z 5 0.01 cm, the thermal properties of succinonitrile [84] properties. The method is also easily able to simulate sur-
correspond to s 5 2.8 3 1025, e 5 2.46 3 1024, cl/cs 5 kl/ks P 1. The face tension and kinetic mobility anisotropies as well as
undercooling St 5 20.1 corresponds to 22.31 K. The growth of the four topology changes.
arms is symmetric and the features are well resolved. One can see the

We find that the method performs well when comparedbeginnings of side branch development; however, for such a low under-
to exact solutions for stable solidification by a line heatcooling the effect of the insulated walls is felt early in the computation

and slows the growth dramatically. As 5 0.08, ms 5 4, Ak 5 0. sink. Grid resolution studies for computations of dendritic
structures indicate that the method converges well under
grid refinement. Although the physical features are well
resolved, the effect of larger grid noise at lower resolutions

eral of the liquid islands have circularized due to the effect acts to trigger the physical instabilities at earlier times. The
of surface tension. The smaller islands eventually com- results are shown to be free of any grid-induced anisotropy
pletely solidify. Comparison between this figure and Fig. 15 and grid orientation effects. As a test of thermodynamic
shows that, other than the topological changes, the general consistency, we have simulated the critical nucleation ra-
structure of the interface remains the same. dius to within 1% and have also matched the maximum

In Fig. 18 we attempt to simulate the growth of a fourfold theoretical solid fraction for solidification in an insulated
symmetric (ms 5 4) succinonitrile dendrite. We do not cavity. For more unstable parameters, in particular for high
expect to obtain agreement with experimental results since St, low s, or high cl/cs, the interface complexity and, thus,
our simulation is for a two-dimensional domain with insu- the required resolution increases. Although the method is,
lated boundaries. We want to demonstrate that we can thus, eventually limited by resolution for highly unstable
achieve qualitatively realistic results using realistic values sets of parameters, we have achieved converged results for
of the physical parameters. If we choose a length scale of realistic values. The results in this work are limited to two
Z 5 0.01 cm then the thermal properties of succinonitrile dimensions, however, and are not directly comparable to
[84] correspond to s 5 2.8 3 1025, e 5 2.46 3 1024, three-dimensional experimental results.
cl/cs 5 kl/ks P 1 with a negligible density change upon For unstable, dendritic solidification with discontinuous
solidification. The undercooling St 5 20.1 corresponds to material properties, we have found that the interface grows
22.31 K. The magnitude of the capillary anisotropy is faster with an increase in the liquid to solid thermal conduc-
As 5 0.08 which is in the range of values reported in [85, tivity and volumetric heat capacity ratios. In addition, with
86]. There is no anisotropy in the kinetic mobility. We a small increase in the heat capacity ratio, the solid grows
note that the form of the anisotropic capillary parameter faster and the interface becomes more unstable than would
used in the above references is be expected by an analysis of similar conditions in stable

solidification. We identify two mechanisms which contrib-
ute to and magnify this instability. Our results indicate thatsn(u) 5 s [1 2 As cos (4u)] (41)
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